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Abstract. We give a complete description of all possible forms of the nonuniform spec-
trum for an evolution family on a Banach space. Moreover, for each form we provide an
explicit example of a nonautonomous differential equation on l2(N) whose evolution
family has that spectrum. As an application, we show that the asymptotic behavior
persists under sufficiently small nonlinear perturbations, in the sense that the lower
and upper Lyapunov exponents of the nonlinear dynamics are in the same connected
component of the nonuniform spectrum.
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1 Introduction

For an evolution family on a Banach space, we give a complete description of all possible
forms of the nonuniform spectrum. This notion of spectrum is inspired on the one introduced
by Sacker and Sell in [12] in terms of uniform exponential dichotomies. Instead, we consider
nonuniform exponential dichotomies with an arbitrarily small nonuniform part, for which the
conditional stability, although exponential, need not be uniformly exponential on the initial
time. We emphasize that these exponential dichotomies are very common in the context of
ergodic theory—in strong contrast, the notion of uniform exponential dichotomy is much
more restrictive. In particular, almost all trajectories with nonzero Lyapunov exponents of
a measure-preserving flow give rise to a linear variational equation admitting a nonuniform
exponential dichotomy with an arbitrarily small nonuniform part. Our results can also be
considered a contribution to the theory of nonuniform hyperbolicity, which is an important
tool in the study of stochastic behavior. We refer the reader to [1] for a detailed exposition of
the theory, which goes back to landmark works of Oseledets [8] and particularly Pesin [9].

Given an evolution family T(t, s) of linear operators acting on a Banach space, its nonuni-
form spectrum is the set Σ of all numbers a ∈ R such that the evolution family e−a(t−s)T(t, s)
does not admit a nonuniform exponential dichotomy with an arbitrarily small nonuniform
part. Our main aim is to describe the structure of the nonuniform spectrum (see Theorem 2.2):
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Main Theorem. The nonuniform spectrum Σ is either ∅, R, a finite union of disjoint closed intervals
(possibly unbounded), or there exists numbers

b1 ≥ a1 > b2 ≥ a2 > b3 ≥ a3 > · · ·

such that

Σ = I1 ∪
∞⋃

n=2

[an, bn] or Σ = I1 ∪
∞⋃

n=2

[an, bn] ∪ (−∞, a∞],

where I1 = [a1, b1] or I1 = [a1,+∞), respectively if an → −∞ or an → a∞.

Moreover, we describe how the nonuniform spectrum relates to certain invariant subspaces
(see Theorems 2.7 and 2.8). In particular, we show that each trajectory of the evolution fam-
ily has lower and upper Lyapunov exponents inside the same connected component of the
nonuniform spectrum. For related work we refer the reader to [3, 6, 13].

In addition, the asymptotic behavior persists under sufficiently small nonlinear perturba-
tions, in the sense that the lower and upper Lyapunov exponents of the nonlinear dynamics
belong to the same connected component of the nonuniform spectrum (see Theorem 2.10).
More precisely, consider a nonzero global solution x(t) of the nonlinear equation

x(t) = T(t, s)x(s) +
∫ t

s
T(t, τ) f (τ, x(τ)) dτ

such that
ap ≤ lim inf

t→+∞

1
t

log‖x(t)‖ ≤ lim sup
t→+∞

1
t

log‖x(t)‖ ≤ sup Σ

and

lim
t→+∞

∫ t+1

t
eδτ ‖ f (τ, x(τ))‖

‖x(τ)‖ dτ = 0

for some δ > 0. Then there exists i ∈ {1, . . . , p} such that

ai ≤ lim inf
t→+∞

1
t

log‖x(t)‖ ≤ lim sup
t→+∞

1
t

log‖x(t)‖ ≤ bi.

A related result was established by Coppel in [4] for perturbations of a linear differential
equation with constant coefficients. Corresponding results for perturbations of autonomous
delay equations were established by Pituk [10, 11] (for values in a finite-dimensional space)
and by Matsui, Matsunaga and Murakami [7] (for values in a Banach space).

Finally, for each possible form of the nonuniform spectrum Σ we provide an explicit ex-
ample of an evolution family on l2(N) having that spectrum (see Section 3).

2 Nonuniform spectrum

2.1 Preliminaries

Let B(X) be the set of all bounded linear operators acting on a Banach space X. A family
T(t, s), for t, s ∈ R with t ≥ s, of linear operators in B(X) is called an evolution family if:

1. T(t, t) = Id for t ∈ R;

2. T(t, s)T(s, τ) = T(t, τ) for t, s, τ ∈ R with t ≥ s ≥ τ.
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We say that an evolution family T(t, τ) admits a nonuniform exponential dichotomy with an
arbitrarily small nonuniform part or simply a nonuniform dichotomy if:

1. there exist projections Pt : X → X for t ∈ R with dim Ker Pt < +∞ satisfying

T(t, s)Ps = PtT(t, s) (2.1)

for t ≥ s such that the map

T(t, s)|Ker Ps : Ker Ps → Ker Pt

is invertible;

2. there exist λ > 0 and for each ε > 0 a constant D = D(ε) > 0 such that

‖T(t, s)Ps‖ ≤ De−λ(t−s)+ε|s| for t ≥ s (2.2)

and
‖T(t, s)Qs‖ ≤ De−λ(s−t)+ε|s| for t ≤ s, (2.3)

where Qt = Id− Pt and

T(t, s) = (T(s, t)|Ker Pt)
−1 : Ker Pt → Ker Ps

for t < s.

The sets Im Pt and Im Qt are called, respectively, stable and unstable spaces of the nonuniform
dichotomy. We note that the hypothesis that the unstable spaces are finite-dimensional already
appeared for example in [5, 13].

Proposition 2.1. For each t ∈ R, we have

Im Pt =

{
v ∈ X : sup

s≥t
‖T(s, t)v‖ < +∞

}
and Im Qt consists of all vectors v ∈ X for which there exists a function x : (−∞, t] → X such that
x(t) = v, x(t1) = T(t1, t2)x(t2) for t ≥ t1 ≥ t2 and sups≤t‖x(s)‖ < +∞.

Proof. By (2.2) we have
sup
s≥t
‖T(s, t)v‖ < +∞ (2.4)

for v ∈ Im Pt. On the other hand, if v ∈ X satisfies (2.4), then it follows from (2.2) that

sup
s≥t
‖T(s, t)Qtv‖ < +∞. (2.5)

By (2.3), for s ≥ t we have

‖Qtv‖ ≤ De−λ(s−t)+ε|s|‖T(s, t)Qtv‖.

Whenever Qtv 6= 0, taking ε < λ we obtain

sup
s≥t
‖T(s, t)Qtv‖ = +∞,

which contradicts to (2.5). Hence, Qtv = 0 and v ∈ Im Pt.
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Now take a vector v ∈ Im Qt and consider the function x : (−∞, t]→ X defined by x(s) =
T(s, t)v for s ≤ t. Then x(t1) = T(t1, t2)x(t2) for t ≥ t1 ≥ t2 and it follows from (2.3) that
sups≤t‖x(s)‖ < +∞. On the other hand, there exists no v ∈ Im Pt \ {0} for which there is a
function x : (−∞, t]→ X as in the proposition. Indeed, it follows from (2.1) and (2.2) that

‖v‖ = ‖T(t, s)Psx(s)‖ ≤ De−λ(t−s)+ε|s|‖x(s)‖

for s ≤ t. Taking ε < λ yields that sups≤t‖x(s)‖ = +∞.

The nonuniform spectrum of an evolution family T(t, s) is the set Σ of all numbers a ∈ R such
that the evolution family Ta(t, s) = e−a(t−s)T(t, s) does not admit a nonuniform dichotomy. For
each a ∈ R and t ∈ R, let

Sa(t) =
{

v ∈ X : sup
s≥t

(
e−a(s−t)‖T(s, t)v‖

)
< +∞

}
and let Ua(t) be the set of all vectors v ∈ X for which there exists a function x : (−∞, t] → X
such that x(t) = v, x(t1) = T(t1, t2)x(t2) for t ≥ t1 ≥ t2 and

sup
s≤t

(
e−a(s−t)‖x(s)‖

)
< +∞.

We note that if a < b, then

Sa(t) ⊂ Sb(t) and Ub(t) ⊂ Ua(t)

for t ∈ R. By Proposition 2.1, if a ∈ R \ Σ, then

X = Sa(t)⊕Ua(t) for t ∈ R

and the dimensions dim Sa(t) and dim Ua(t) are independent of t.

2.2 Main result

The following theorem is our main result. It describes all possible forms of the nonuniform
spectrum.

Theorem 2.2. For an evolution family T(t, s) on a Banach space, one of the following alternatives
holds:

1. Σ = ∅;

2. Σ = R;

3. Σ is a finite union of disjoint closed intervals (possibly unbounded);

4. Σ = I1 ∪
⋃∞

n=2[an, bn], where I1 = [a1, b1] or I1 = [a1,+∞), for some numbers

b1 ≥ a1 > b2 ≥ a2 > b3 ≥ a3 > · · · (2.6)

with limn→+∞ an = −∞;

5. Σ = I1 ∪
⋃∞

n=2[an, bn] ∪ (−∞, a∞], where I1 = [a1, b1] or I1 = [a1,+∞), for some numbers as
in (2.6) with a∞ = limn→+∞ an.
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Proof. We first establish some auxiliary results.

Lemma 2.3. The set Σ ⊂ R is closed and for each a ∈ R \ Σ we have Sa(t) = Sb(t) and Ua(t) =

Ub(t) for all t ∈ R and all b in some open neighborhood of a.

Proof of the lemma. Given a ∈ R \ Σ, there exist projections Pt for t ∈ R satisfying (2.1), a con-
stant λ > 0 and for each ε > 0 a constant D = D(ε) > 0 such that

‖e−a(t−s)T(t, s)Ps‖ ≤ De−λ(t−s)+ε|s|

for t ≥ s and

‖e−a(t−s)T(t, s)Qs‖ ≤ De−λ(s−t)+ε|s|

for t ≤ s. Therefore, for each b ∈ R,

‖e−b(t−s)T(t, s)Ps‖ ≤ De−(λ−a+b)(t−s)+ε|s|

for t ≥ s and
‖e−b(t−s)T(t, s)Qs‖ ≤ De−(λ+a−b)(s−t)+ε|s|

for t ≤ s. Hence, b ∈ R \ Σ whenever |a − b| < λ and it follows from Proposition 2.1 that
Sb(t) = Sa(t) and Ub(t) = Ua(t) for t ∈ R.

Lemma 2.4. Take a1, a2 ∈ R \ Σ with a1 < a2. Then [a1, a2] ∩ Σ 6= ∅ if and only if dim Ua1(t) >
dim Ua2(t).

Proof of the lemma. Assume that dim Ua1(t) = dim Ua2(t). Then Ua1(t) = Ua2(t) and Sa1(t) =

Sa2(t) for t ∈ R. Hence, by Proposition 2.1, there exist projections Pt for t ∈ R satisfying (2.1),
constants λ1, λ2 > 0 and for each ε > 0 constants D1 = D1(ε), D2 = D2(ε) > 0 such that for
i = 1, 2 we have

‖e−ai(t−s)T(t, s)Ps‖ ≤ Die−λi(t−s)+ε|s| for t ≥ s (2.7)

and
‖e−ai(t−s)T(t, s)Qs‖ ≤ Die−λi(s−t)+ε|s| for t ≤ s. (2.8)

For each a ∈ [a1, a2], by (2.7) we obtain

‖e−a(t−s)T(t, s)Ps‖ ≤ D1e−λ1(t−s)+ε|s| for t ≥ s

and similarly, by (2.8),

‖e−a(t−s)T(t, s)Qs‖ ≤ D2e−λ2(s−t)+ε|s| for t ≤ s.

Taking λ = min{λ1, λ2} and D = max{D1, D2} yields that [a1, a2] ⊂ R \ Σ.
For the converse, assume that dim Ua1(t) > dim Ua2(t) and let

b = inf
{

a ∈ R \ Σ : dim Ua(t) = dim Ua2(t)
}

.

Since dim Ua1(t) > dim Ua2(t), it follows from Lemma 2.3 that a1 < b < a2. Now assume
that b 6∈ Σ. Then either dim Ub(t) = dim Ua2(t) or dim Ub(t) 6= dim Ua2(t). In the first case,
by Lemma 2.3, there exists ε > 0 such that dim Ub′(t) = dim Ua2(t) and b′ ∈ R \ Σ for b′ ∈
(b− ε, b]. But this contradicts to the definition of b. In the second case, again by Lemma 2.3,
there exists ε > 0 such that dim Ub′(t) 6= dim Ua2(t) and b′ ∈ R \ Σ for b′ ∈ [b, b + ε), which
again contradicts to the definition of b. Hence, b ∈ Σ and [a1, a2] ∩ Σ 6= ∅.
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Lemma 2.5. For each c /∈ Σ, the set Σ ∩ [c,+∞) is the union of finitely many closed intervals.

Proof of the lemma. Let
d = dim Uc(t) = dim Ker Pt,

where Pt are the projections associated to the nonuniform dichotomy of the evolution family
e−c(t−s)T(t, s). We assume that Σ∩ [c,+∞) has at least d+ 2 connected components Ii = [αi, βi],
for i = 1, . . . , d + 2, where

α1 ≤ β1 < α2 ≤ β2 < · · · < αd+2 ≤ βd+2 ≤ +∞.

For i = 1, . . . , d + 1, take ci ∈ (βi, αi+1). It follows from Lemma 2.4 that

d > dim Uc1(t) > dim Uc2(t) > · · · > dim Ucd+1(t),

which is impossible.

Now we assume that Σ is not given by one of the first three alternatives in the theorem and
take c1 /∈ Σ. By Lemma 2.5, the set Σ ∩ [c1,+∞) is the union of finitely many disjoint closed
intervals, say I1, . . . , Ik. We note that Σ ∩ (−∞, c1) 6= ∅, since otherwise Σ = I1 ∪ · · · ∪ Ik,
which contradicts to our assumption. Moreover, there exists c2 < c1 such that c2 /∈ Σ and
(c2, c1) ∩ Σ 6= ∅. Otherwise, (−∞, c1) ∩ Σ = (−∞, a] for some a < c1 and thus,

Σ = (−∞, a] ∪ I1 · · · ∪ Ik,

which again contradicts to our assumption. Proceeding inductively, we obtain a decreasing
sequence (cn)n∈N ⊂ R such that

cn /∈ Σ and (cn+1, cn) ∩ Σ 6= ∅

for n ∈ N. Now either limn→+∞ cn = −∞ or limn→+∞ cn = a∞ for some a∞ ∈ R. In the first
case, it follows from Lemma 2.5 that Σ is given by alternative 4. In the second case, it follows
from Lemma 2.5 that

(a∞, ∞) ∩ Σ = I1 ∪
∞⋃

n=2

[an, bn],

where I1 = [a1, b1] or I1 = [a1,+∞), for some sequences (an)n∈N and (bn)n∈N as in (2.6) with
a∞ = limn→+∞ an. Again by Lemma 2.5, we have (−∞, a∞] ⊂ Σ and so Σ is given by the last
alternative.

The finite-dimensional case is simpler.

Theorem 2.6. For an evolution family on a finite-dimensional space, the nonuniform spectrum is given
by one of the first three alternatives in Theorem 2.2.

Proof. Assume that the ambient space has dimension d. We will show that Σ is the union
of at most d + 1 disjoint closed intervals. This implies that Σ is never given by the last two
alternatives in Theorem 2.2.

Assume that Σ has at least d + 2 connected components. Then there exist numbers
c1, . . . , cd+1 ∈ R \ Σ such that ci < ci+1 and (ci, ci+1) ∩ Σ 6= ∅ for i = 1, . . . , d. It follows
from Lemma 2.4 that

d ≥ dim Uc1(t) > dim Uc2(t) > . . . > dim Ucd+1(t),

which is impossible.



Evolution families and nonuniform spectrum 7

2.3 Further properties

In this section we assume that Σ is neither ∅ nor R. Let (ck)k ⊂ R be a finite or infinite
sequence such that ck ∈ (bk+1, ak) for each k, with the numbers ak and bk as in (2.6) and define

Ek(s) = Sck(s) ∩Uck+1(s), k = 1, 2, . . .

Moreover, when Σ ∩R+ is bounded, take c0 > b1 and define

E0(s) = Sc0(s) ∩Uc1(s).

By Lemma 2.4, the subspaces Ek(s) are independent of the numbers ck.

Theorem 2.7. Assume that Σ is neither ∅ nor R. For each k = 1, 2, . . ., s ∈ R and v ∈ Ek(s) \ {0},
we have [

lim inf
t→+∞

1
t

log‖T(t, s)v‖, lim sup
t→+∞

1
t

log‖T(t, s)v‖
]
⊂ [ak+1, bk+1].

When Σ ∩R+ is bounded, this statement also holds for k = 0.

Proof. Since ck /∈ Σ, the evolution family e−ck(t−s)T(t, s) admits a nonuniform dichotomy and
so there exist projections Pt for t ∈ R satisfying (2.1), a constant λ > 0 and for each ε > 0 a
constant D = D(ε) > 0 such that

‖T(t, s)Ps‖ ≤ De(ck−λ)(t−s)+ε|s| for t ≥ s (2.9)

and
‖T(t, s)Qs‖ ≤ De−(λ+ck)(s−t)+ε|s| for t ≤ s,

where Qt = Id − Pt. By Proposition 2.1, we have Im Pt = Sck(t) for t ∈ R. Hence, each
v ∈ Ek(s) belongs to Im Ps and so, by (2.9),

lim sup
t→+∞

1
t

log‖T(t, s)v‖ ≤ ck − λ < ck.

Letting ck ↘ bk+1, we obtain

lim sup
t→+∞

1
t

log‖T(t, s)v‖ ≤ bk+1.

Similarly, since ck+1 /∈ Σ, there exist projections P′t for t ∈ R satisfying (2.1), a constant µ > 0
and for each ε > 0 a constant D = D(ε) > 0 such that

‖T(t, s)P′s‖ ≤ De(ck+1−µ)(t−s)+ε|s| for t ≥ s

and

‖T(t, s)Q′s‖ ≤ De−(µ+ck+1)(s−t)+ε|s| for t ≤ s, (2.10)

where Q′t = Id− P′t . By Proposition 2.1, we have Im Q′t = Uck+1(t) for t ∈ R. Hence, each
v ∈ Ek(s) belongs to Im Q′s and so, by (2.10),

‖v‖ ≤ De−(µ+ck+1)(t−s)+ε|t|‖T(t, s)v‖ for t ≥ s.

Taking ε sufficiently small, we obtain

lim inf
t→+∞

1
t

log‖T(t, s)v‖ ≥ µ + ck+1 − ε > ck+1
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and letting ck+1 ↗ ak+1 yield that

lim inf
t→+∞

1
t

log‖T(t, s)v‖ ≥ ak+1.

This completes the proof of the theorem.

A similar argument yields a corresponding statement for negative time.

Theorem 2.8. Assume that Σ is neither ∅ nor R. For each k = 1, 2, . . ., s ∈ R and v ∈ Ek(s) \ {0},
there exists a function x : (−∞, s] → X such that x(s) = v, x(t1) = T(t1, t2)x(t2) for s ≥ t1 ≥ t2

and [
lim inf
t→−∞

1
t

log‖x(t)‖, lim sup
t→−∞

1
t

log‖x(t)‖
]
⊂ [ak+1, bk+1].

When Σ ∩R+ is bounded, this statement also holds for k = 0.

The following example illustrates Theorems 2.7 and 2.8.

Example 2.9. Consider the evolution family T(t, s) obtained from the nonautonomous linear
equation x′ = A(t)x with

A(t) =
(

1 0
0 3t2

)
.

For each a > 1, the evolution family Ta(t, s) = e−a(t−s)T(t, s) admits a nonuniform dichotomy
with projections Pt(x, y) = (x, 0) (see Example 3.1 below for details). On the other hand, for
a < 1 the evolution family Ta(t, s) admits a nonuniform dichotomy with projections Pt = 0.
Clearly, T1(t, s) does not admit a nonuniform dichotomy and so Σ = {1}.

Now take c1 < 1 < c0 (which corresponds to take a1 = b1 = 1). Then

E0(t) = Sc0(t) ∩Uc1(t) = (R× {0}) ∩R2 = R× {0}

and by Theorems 2.7 and 2.8, for s ∈ R and v = (x, 0) ∈ R× {0} with x 6= 0, we have

lim
t→±∞

1
t

log‖T(t, s)v‖ = 1.

2.4 Nonlinear perturbations

It turns out that the asymptotic behavior described in Theorem 2.7 persists under sufficiently
small nonlinear perturbations. Given an evolution family T(t, s) on a Banach space X, we
consider the nonlinear equation

x(t) = T(t, s)x(s) +
∫ t

s
T(t, τ) f (τ, x(τ)) dτ (2.11)

for some continuous map f : R× X → X. Repeating arguments in the proof of Theorem 6
in [2] we obtain the following result.

Theorem 2.10. For an evolution family T(t, s) on a Banach space such that Σ is neither ∅ nor R, let
x(t) be a nonzero global solution of equation (2.11) such that

ap ≤ lim inf
t→+∞

1
t

log‖x(t)‖ ≤ lim sup
t→+∞

1
t

log‖x(t)‖ ≤ sup Σ
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for some integer p and

lim
t→+∞

∫ t+1

t
eδτ ‖ f (τ, x(τ))‖

‖x(τ)‖ dτ = 0

for some δ > 0. Then there exists i ∈ {1, . . . , p} such that

ai ≤ lim inf
t→+∞

1
t

log‖x(t)‖ ≤ lim sup
t→+∞

1
t

log‖x(t)‖ ≤ bi,

with the convention that b1 = +∞ when I1 = [a1,+∞).

3 Examples

In this section we provide explicit examples of all possible forms of the nonuniform spec-
trum Σ given by Theorem 2.2. Let X = `2(N) be a separable infinite-dimensional Hilbert
space with the orthonormal basis {e1, e2, . . .}.

Example 3.1. Consider the evolution family T(t, s) on X given by

T(t, s)en =

{
et3−s3

e1, n = 1,

es3−t3
en, n ≥ 2.

It is obtained from the linear equation x′ = A(t)x, where A(t)e1 = 3t2e1 and A(t)en = −3t2en

for n ≥ 2.
We claim that Σ = ∅. We first consider the evolution family T1(t, s) = et3−s3

on R. Given
a ∈ R and λ > 0, consider the function g : R→ R given by

g(t) = −at + t3 − λt.

There exists C > 0 such that g is increasing on the intervals (−∞,−C) and (C,+∞). Hence,

e−a(t−s)+t3−s3+λ(s−t) = eg(t)−g(s) ≤ 1

whenever t ≤ s < −C or C < t ≤ s. This implies that there exists D > 0 such that

e−a(t−s)+t3−s3+λ(s−t) ≤ D

for t ≤ s and so
(T1)a(t, s) ≤ De−λ(s−t)

for t ≤ s. Hence, (T1)a(t, s) = e−a(t−s)T1(t, s) admits a nonuniform dichotomy with projec-
tions Pt = 0. Now we consider the evolution family T2(t, s) = es3−t3

. Proceeding as above, one
can show that (T2)a(t, s) admits a nonuniform dichotomy with projections Pt = Id. Therefore,
Ta(t, s) admits a nonuniform dichotomy with projections Pt given by Pte1 = 0 and Pten = en

for n ≥ 2.

Example 3.2. Consider the evolution family T(t, s) on X given by

T(t, s)en =

{
ect cos t−cs cos s−c sin t+c sin se1, n = 1,

es3−t3
en, n ≥ 2,
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where c > 0. It is obtained from the linear equation x′ = A(t)x, where A(t)e1 = −ct sin te1

and A(t)en = −3t2en for n ≥ 2.
We claim that Σ = R. For this it is sufficient to prove that the nonuniform spectrum of the

evolution family
T1(t, s) = ect cos t−cs cos s−c sin t+c sin s

is R. Take a ∈ R and assume that the evolution family (T1)a(t, s) admits a nonuniform
dichotomy with projections Pt. There are two possibilities: either Pt = Id for all t ∈ R or
Pt = 0 for all t ∈ R. In the first case, there exist λ > 0 and for each ε > 0 a constant
D = D(ε) > 0 such that

e−a(t−s)T1(t, s) ≤ De−λ(t−s)+ε|s| for t ≥ s.

In particular, for t = 2lπ and s = (2l − 1)π with l ∈N, we obtain

e(λ−a+c)π+2cs ≤ Deεs,

which is impossible for ε < 2c. In the second case, there exist λ > 0 and for each ε > 0 a
constant D = D(ε) > 0 such that

e−a(t−s)T1(t, s) ≤ De−λ(s−t)+ε|s| for t ≤ s.

Taking t = 2lπ and s = (2l + 1)π with l ∈N, we obtain

e(a−c+λ)π+2cs ≤ Deεs,

which again is impossible for ε < 2c. In other words, for each a ∈ R the evolution family
(T1)a(t, s) does not admit a nonuniform dichotomy. Thus, Σ = R.

Example 3.3. Take numbers

b1 ≥ a1 > b2 ≥ a2 > b3 ≥ a3 > · · · > bk ≥ ak

for some integer k ≥ 1. For each j ∈ {1, . . . , k}, let φj : R→ R be a smooth function such that
φj(t) = aj for t ≤ −1 and φj(t) = bj for t ≥ 1. We consider a linear equation x′ = A(t)x on X,
where A(t)ej = aj(t)ej for each j, taking

aj(t) =

φj(t) + 1
2
√

1+t
sin t +

√
1 + t cos t, t ≥ 0,

φj(t)− 1
2
√

1−t
sin t +

√
1− t cos t, t < 0

for 1 ≤ j ≤ k and aj(t) = −3t2 for j > k. The corresponding evolution family T(t, s) satisfies
T(t, s)ej = T j(t, s)ej for each j, where

T j(t, s) =


ebj(t−s)+

√
1+t sin t−

√
1+s sin s, t, s ≥ 0,

ebjt−ajs+
√

1+t sin t−
√

1+|s| sin s, t ≥ 0, s < 0,

eaj(t−s)+
√

1+|t| sin t−
√

1+|s| sin s, t, s < 0

(3.1)

for 1 ≤ j ≤ k and T j(t, s) = et3−s3
for j > k.

We claim that for each j ∈ {1, . . . , k} and a /∈ [aj, bj], the evolution family (T j)a(t, s) admits
a nonuniform dichotomy. Take a > bj. Since aj ≤ bj, we have

e−a(t−s)T j(t, s) ≤ e−(a−bj)(t−s)+
√

1+|t|+
√

1+|s| (3.2)
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for t ≥ s. Moreover, since √
1 + |t|
|t| → 0 when |t| → +∞,

given δ > 0, there exists D = D(δ) > 0 such that

e
√

1+|t| ≤ Deδ|t| for t ∈ R.

Hence, it follows from (3.2) that

e−a(t−s)T j(t, s) ≤ D2e−(a−bj)(t−s)+δ|t|+δ|s|

≤ D2e−(a−bj−δ)(t−s)+2δ|s|

for t ≥ s. Since a− bj > 0 and δ is arbitrary, this shows that (T j)a(t, s) admits a nonuniform
dichotomy with projections Pt = Id. Similarly, for a < aj and t ≤ s, we have

e−a(t−s)T j(t, s) ≤ D2e(aj−a−δ)(t−s)+2δ|s|.

Hence, (T j)a(t, s) admits a nonuniform dichotomy with projections Pt = 0. We also show
that for each j ∈ {1, . . . , k} and a ∈ [aj, bj], the evolution family (T j)a(t, s) does not admit a
nonuniform dichotomy. Since bj − a ≥ 0, the first branch of

(T j)a(t, s) =


e(bj−a)(t−s)+

√
1+t sin t−

√
1+s sin s, t, s ≥ 0,

e(bj−a)t−(aj−a)s+
√

1+t sin t−
√

1+|s| sin s, t ≥ 0, s < 0,

e(aj−a)(t−s)+
√

1+|t| sin t−
√

1+|s| sin s, t, s < 0

precludes the existence of a nonuniform dichotomy with projections Pt = Id. Moreover, since
aj − a ≤ 0, the third branch precludes the existence of a nonuniform dichotomy with projec-
tions Pt = 0. We conclude that for each j ∈ {1, . . . , k}, the evolution operator (T j)a(t, s) admits
a nonuniform dichotomy if and only if a /∈ [aj, bj]. On the other hand, for each j > k and a ∈ R,
the evolution family (T j)a(t, s) admits a nonuniform dichotomy with projections Pt = Id.

Finally, we show that Σ =
⋃k

j=1[aj, bj]. Take a ∈ R \ ⋃k
j=1[aj, bj]. From what is proved,

it follows that for a > b1 the evolution family Ta(t, s) admits a nonuniform dichotomy with
projections Pt = Id. Moreover, for a < ak it admits a nonuniform dichotomy with projections
Pt given by

Ptej = 0 for 1 ≤ j ≤ k and Ptej = ej for j > k.

Finally, take j ∈ {1, . . . , k − 1} such that aj > a > bj+1. Then Ta(t, s) admits a nonuniform
dichotomy with projections Pt given by Ptei = 0 for 1 ≤ i ≤ j and Ptei = ei for i > j. Therefore,
Σ ⊂ ⋃k

j=1[aj, bj]. Conversely, take a ∈ [aj, bj] for some j = 1, . . . , k and assume that a /∈ Σ. Since
Ta(t, s) admits a nonuniform dichotomy, the same happens to (T j)a(t, s), but this is impossible
since a ∈ [aj, bj].

A similar construction can be effected for the case when the spectrum has unbounded
connected components.

Example 3.4. Take numbers an and bn as in (2.6) with limj→+∞ aj = −∞. We consider the evo-
lution family T(t, s) given by T(t, s)ej = T j(t, s)ej for j ∈N with T j(t, s) as in (3.1). Proceeding
as in Example 3.3, one can show that for each a > b1 the evolution family Ta(t, s) admits a
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nonuniform dichotomy with projections Pt = Id. Moreover, for a ∈ (bj+1, aj) with j ∈ N it
admits a nonuniform dichotomy with projections Pt given by

Ptei = 0 for 1 ≤ i ≤ j and Ptei = ei for i ≥ j + 1.

Finally, in a similar manner to that in Example 3.3, we have [aj, bj] ⊂ Σ for each j ∈ N and so
Σ =

⋃∞
n=1[an, bn]. A similar construction can be effected for the case when I1 = [a1,+∞).

Example 3.5. Take numbers an and bn as in (2.6) with limj→+∞ aj = a∞ ∈ R. For each n ∈ N,
let φn : R→ R be a smooth function such that φn(t) = an for t ≤ −1 and φn(t) = bn for t ≥ 1.
We consider the linear equation x′ = A(t)x on X, where A(t)ej = aj(t)ej and

aj(t) =

φj(t) + 1
2
√

1+t
sin t +

√
1 + t cos t, t ≥ 0,

φj(t)− 1
2
√

1−t
sin t +

√
1− t cos t, t < 0

for j ∈ N. The corresponding evolution family T(t, s) satisfies T(t, s)ej = T j(t, s)ej, for j ∈ N,
with T j(t, s) as in (3.1). Proceeding as in Example 3.3, one can show that for each a > b1 the
evolution family Ta(t, s) admits a nonuniform dichotomy with projections Pt = Id. Moreover,
for a ∈ (bj+1, aj) with j ∈N it admits a nonuniform dichotomy with projections Pt given by

Ptei = 0 for 1 ≤ i ≤ j and Ptei = ei for i ≥ j + 1.

As in Example 3.3, we have [aj, bj] ⊂ Σ for each j ∈ N. Finally, by Lemma 2.5, (−∞, a∞] ⊂ Σ
and so Σ =

⋃∞
n=1[an, bn] ∪ (−∞, a∞]. Again, a similar construction can be effected for the case

when I1 = [a1,+∞).
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